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Abstract  Alzheimer’s disease is a degenerative brain con-
dition causing memory loss in the elderly. Existing machine 
learning methods often yield low classification accuracy due 
to evaluating single modality features. This paper presents 
a novel approach that combines Graph Attention Networks 
and Deep Convolutional Graph Neural Networks to leverage 
3D 1.5 T and 3 T T1-weighted MRI images as nodes, ena-
bling faster feature extraction. Three Graph Convolutional 
Network layers are introduced to improve the classification 
accuracy for three binary classifications (AD vs. CN, MCI 
vs. CN, and MCI vs. AD) and multiclass classification (AD 
vs. CN vs. MCI). The model is optimized for weight updates 
using the Adaptive Stochastic Gradient Descent technique. 
Comparative analysis with efficient 3DNET, Squeeze3D-
NET, and GoogLENET demonstrates superior performance 
of the proposed DCGNN network. Furthermore, evaluations 
against four state-of-the-art techniques for binary and mul-
ticlass classifications show its potential in diagnosing the 
early stages of Alzheimer’s disease. The developed model 
exhibits promise as an effective tool for diagnosing Alzhei-
mer’s disease at its early stages.

Keywords  Alzheimer’s disease · Deep neural networks · 
Graph attention · Magnetic resonance imaging · Mild 
cognitive impairment

1  Introduction

Most researchers concur that the brain is one of the body’s 
most crucial organs. All actions and reactions that enable us 
to believe and think are regulated by and maintained by the 
brain. It also assists in maintaining audio memories and feel-
ings (Menéndez 2017). Alzheimer’s disease is a progressive 
and degenerative brain disorder that is the most common 
cause of dementia, which is a decline in cognitive function 
that affects memory, thinking, and behavior. The disease was 
first identified by Dr. Alois Alzheimer in 1906 and is named 
after him (Goedert and Ghetti 2007). Alzheimer’s disease is 
a complex and multifactorial condition characterized by the 
accumulation of amyloid plaques and neurofibrillary tangles 
in the brain, disrupting the communication between neurons 
and leading to their death. This results in gradually losing 
cognitive abilities, such as memory, language, decision-
making, and personality changes.

Research on Alzheimer’s disease (AD) is driven by 
the urgent need to address the profound impact this neu-
rodegenerative condition has on individuals, families, and 
society. AD is a progressive and irreversible brain disorder 
that primarily affects memory, cognition, and daily func-
tioning, leading to significant cognitive decline and loss of 
independence in affected individuals. As the global popula-
tion ages, the prevalence of AD is increasing, making it a 
pressing public health concern. The primary motivations for 
researching AD include seeking a deeper understanding of 
its underlying causes, risk factors, and disease mechanisms. 
This knowledge is crucial for developing effective preventive 
measures, diagnostic tools, and therapeutic interventions. 
Research also focuses on identifying early biomarkers to 
enable early detection, improving disease management, and 
ultimately finding a cure. By unraveling the complexities 
of AD, researchers aim to alleviate its burden on affected 

 *	 Rashmi Kumari 
	 Rashmi.kumari@bennett.edu.in
1	 School of Computer Science Engineering and Technology, 

Bennett University, Greater Noida, Uttar Pradesh 201310, 
India

2	 Department of Computer Science Engineering, Parul 
University, Gujrat 391760, India

3	 Department of Electronics and Communication Engineering, 
National Institute of Technology, Jamshedpur 831014, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-02180-z&domain=pdf
http://orcid.org/0000-0001-5435-4152


932	 Int J  Syst  Assur  Eng  Manag (March 2024) 15(3):931–949

1 3

individuals and caregivers, enhance the quality of life for 
patients, and contribute to the broader mission of advancing 
neuroscience and geriatric medicine. Aging, skull fractures, 
and lifestyle habits are just a few of the warning factors that 
might lead to AD. Although age is the main risk factor for 
dementia, studies show that a person beyond 65 has a 1–2% 
chance of developing the condition. This risk can escalate by 
30% by age 85 (Cui et al. 2019; Demirhan 2016). By 2050, 
AD may impact 1 in every 85 persons, according to recent 
research studied by Alzheimer’s Disease Research (Farooq 
et al. 2017).

Early detection and treatment of AD patients are essential 
to have good living conditions in the future. There are many 
ways to diagnose and forecast the disease by considering the 
different modalities such as MRI, Position Emission Tomog-
raphy (PET), and Computed Tomography (CT) scans. How-
ever, MRI is the neuroimaging modality most frequently 
used to diagnose AD patients (Demirhan 2016; Farooq et al. 
2017). Previous studies have combined Machine Learning 
(ML) and Deep Learning (DL) algorithms with MRI-based 
classification approaches (Fritsch et al. 2019). Some of the 
studies are explained in the subsequent paragraphs.

In a few years, it has been discovered that Machine Learn-
ing (ML) approaches are beneficial for diagnosing Alzhei-
mer’s (Chen et al. 2022; Cui et al. 2023a, 2023b). Kloppel 
et al. (2008) claimed that SVM can aid in diagnosing AD 
by using it to classify pathologically proven instances of 
AD with CN. According to references (Javeed et al. 2023, 
2023; Zhao et al. ), linear kernel outperforms polynomial 
or RBF kernel for high dimensional data classification per-
formance. Nonetheless, scientists also make use of polyno-
mial kernels. The polynomial kernel was utilized by Lah-
miri et al. (2014) for the multiclass categorization of CN, 
MCI, and AD. A polynomial kernel helps classify CN vs. 
AD using PCA features, according to Zhang et al. (2015). 
In 2018, Lahmiri et al. (2019) classified CN vs. AD using a 
polynomial kernel, volumetric characteristics, and cognitive 
test results. Moreover, several researchers combined many 
kernels. Alam et al. (2017) categorized CN, MCI, and AD 
using multiple kernel SVM. Kamathe et al. (2018) used lin-
ear, polynomial, and RBF kernels to categorize CN vs. AD. 
Zhu et al. (2016) proposed the application of a temporally 
structured SVM (TS-SVM) for classifying longitudinal MR 
images of MCI converters and non-converters, allowing for 
early identification of Alzheimer’s. A random forest robust 
SVM (RF-RSVM) was proposed by Lu et al. (2017) for the 
classification of CN vs. MCI using FDG-PET images. Using 
dual-tree complex wavelet transform (DTCWT), LDA, and 
PCA features, TWSVM is employed to classify CN vs. AD 
(Sharma et al. 2022). From the methods mentioned above, 
ML methods require extra computational time in process-
ing the features, resulting in more significant resource 
costs. Therefore, Deep Learning (DL) techniques are more 

valuable by incorporating the feature extraction step in the 
model, resulting in higher classification accuracy. Some of 
the recent Deep Learning techniques have been explained in 
the next paragraph.

A classification method for AD developed by Cui et al. 
(2023) uses convolutional and recurrent neural networks 
(RNNs). First, CNN was created to categorize MR pic-
tures by learning spatial components. The RNN and cas-
caded Bidirectional Gated Recurrent Unit (BGRU) layers 
were created using CNN outputs at various time intervals to 
extract longitudinal characteristics for AD classification. The 
approach suggested jointly learning spatial and longitudinal 
qualities to improve performance rather than isolating ele-
ments individually. The recommended method would also 
use an RNN to create a longitudinal study from imaging 
data gathered over time. According to the results, the rec-
ommended method had a greater accuracy of about 91.33% 
when comparing AD to NC and 71.71% when contrasting 
Progressive Mild Cognitive Impairment (pMCI) to Stable 
Mild Cognitive Impairment (sMCI). Another innovative 
Voxel-based Hierarchical Feature Extraction (VHFE) tech-
nique was put forth by Yue et al. (2019) to detect AD early. 
With the help of a template, it divides the entire brain into 
90 separate ROIs (AAL). Informative voxels were used for 
each ROI using a baseline of values and organized into a sin-
gle vector to separate informative from uninformative data. 
Convolutional Neural Networks were fed the brain feature 
maps for each subject utilizing voxels, with the first stage 
of these features being selected (CNN). Finally, the authors 
examined the approach on a portion of an ADNI database 
to confirm its viability. The testing outcomes demonstrated 
the method’s robustness in comparison to other methods.

The proposed methodology addresses critical technical 
gaps observed in existing works for Alzheimer’s disease 
(AD) classification. Unlike isolated spatial or longitudinal 
analysis in traditional methods, the proposed approach inte-
grates both aspects using convolutional and recurrent neural 
networks (CNNs and BGRUs). This joint analysis allows 
for a more comprehensive understanding of AD progres-
sion, simultaneously capturing spatial and temporal patterns. 
Leveraging longitudinal data helps identify dynamic changes 
over time, enhancing the model’s ability to distinguish 
between Mild Cognitive Impairment (MCI) and AD stages. 
Furthermore, the innovative Voxel-based Hierarchical Fea-
ture Extraction (VHFE) technique overcomes limitations in 
traditional voxel-based approaches, improving the discrimi-
native power of brain imaging data. The proposed methodol-
ogy exhibits greater accuracy, robustness, and potential for 
early-stage AD detection, promising more effective and reli-
able diagnostic tools for AD and related cognitive disorders.

After considering the advantages of all the models men-
tioned above, we have proposed a new technique where 
the features are stored as nodes that act as input to GAT 
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networks in which the single layer attention networks have 
been considered. Then, the optimized nodes generated from 
GAT networks are given as inputs to the proposed Deep 
Convolutional Graph Neural Networks (DCGNN) for clas-
sifying AD, MCI, and CN subjects. The main contributions 
of the paper are:

1.	 For early detection of Alzheimer’s Disease, 3D T1 
weighted MRI images of Magnetic Field Strength 1.5T, 
and 3T have been considered for our study from three 
different ADNI datasets.

2.	 For extracting different features, such as in the hip-
pocampus area, left cerebellum cortex, and structural 
brain volume, FreeSurfer 6.0.1 software installed in the 
High Performance Computing (HPC) has been utilized 
in 3D MRI images.

3.	 Graph Attention Networks (GAT) have been proposed 
to acquire information about the extracted features as 
nodes. Then, Single Graph Attention Layer (SGAT) is 
constructed for getting optimized nodes which are given 
as inputs to the proposed Deep Convolutional Graph 
Neural Networks (DCGNN) for three binary classifica-
tions and one multi class. Also, Adaptive Stochastic Gra-
dient Descent (ASGD) optimization technique is applied 
for updating the weights of three Graph Convolutional 
Network (GCN) layers in the proposed networks.

4.	 To compare the effectiveness of the proposed DCGNN 
network with three other existing networks, 857 par-
ticipants from three separate ADNI databases have been 
used. Additionally, the proposed methodology has been 
compared to four cutting-edge techniques for each of the 
three binary classifications and multiclass classification, 
and simulation results indicate that it generates the best 
classification outcomes.

The organization of the paper has been as follows: The 
detailed description of the dataset and the specifications of 
MRI protocol as well as FreeSurfer software, has been men-
tioned in Sect. 2. Sect. 3 depicts the proposed network’s 
working methodology and the optimization technique for 
updating the weights. Simulation findings have been elabo-
rated on in Sect. 4. Finally, the conclusion and future of the 
research directions have been explained in Sect. 5.

2 � Materials and methods

2.1 � Description of the dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(2010) is a large-scale, multicenter study that aims to iden-
tify and track the progression of Alzheimer’s disease (AD) 
through various clinical, imaging, genetic, and cognitive 

assessments. The dataset consists of data from three cohorts: 
ADNI-1, ADNI-2, and ADNI-3, which were collected 
between 2004 and 2016. The ADNI dataset contains a wide 
range of data types, including clinical assessments, cogni-
tive tests, magnetic resonance imaging (MRI) scans, posi-
tron emission tomography (PET) scans, and genetic data 
(Petersen et al. 2010).

Real-time data from the baseline 3D T1-weighted MRI 
images of magnetic strength 3 T from the three ADNI-1, 
ADNI-2, and ADNI-3 datasets have been acquired. Here, 
273, 326, and 258 subjects have been considered for the 
study, comprising AD, MCI, and CN classes. Moreover, 
the subjects have been selected based on four criteria, such 
as Functional Activities Questionnaire (FAQ), Mini-Men-
tal State Examination (MMSE), Global Clinical Demen-
tia Rating (Global CDR), and Geriatric Depression Scale 
(GDSCALE). The magnetic field strength of 3 T has been 
taken into consideration for 3D T1 MRI images consisting 
of 1726 scans in the ADNI-1 dataset, 1342 scans for 1.5 T 
magnetic field strength in ADNI-2, and 1023 scans of 3 T 
magnetic field strength for ADNI-3 dataset. All MR images 
are normalized for N3 and B1 nonuniformity before fur-
ther processing. The Neuroimaging Informatics Technology 
Initiative (NIfTI) format has been employed for saving and 
storing MR images. The FMRIB Software Library (FSL) 
toolset registers MR images (McKhann et al. 2011). Table 1 
provides a detailed description of the three ADNI subjects 
and highlights the subjects’ demographic characteristics.

2.2 � Procedure of the study

In this study, there are two phases of operation. In its 1st 
phase, real-time data is extracted through Freesurfer Soft-
ware for all classes, such as AD, CN, and MCI, where the 
different optimized features are removed on the 3D T1- 
weighted MRI images based on age, sex, MMSE, FAQ, 
MMSE, Global CDR, and GD Scale. In the 2nd phase, 
these optimized features are stored as nodes of the pro-
posed Graph Attention Network (GAT), where the Single 
Graph Attention Layer (SGAL) has been added to reduce the 
redundant features. The output of the layer is the optimized 
nodes generated from GAT networks, which act as inputs to 
the proposed Deep Convolutional Graph Neural Networks 
(DCGNN), where the patients are classified with AD, CN, 
and MCI. The flow diagram of the total procedure of the 
study is shown in Fig. 1.

2.3 � MRI protocol

The specifications of 1.5 T and 3 T T1-weighted MRI proto-
col are as follows: SAGITTAL Acquisition Plane, 3D Acqui-
sition Type, 8HRBRAIN Coil, 1.5 Tesla Magnetic Strength, 
8˚ Flip Angle, GE MEDICAL SYSTEMS Manufacturer, 256 
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pixels of Matrix X and Matrix Y, 166 Pixels of Matrix Z, 
SIGNA HDx Manufacturer Model, 0.9 mm of Pixel Spacing 
X and Y, RM Pulse Sequence, 1.2 mm of Slice thickness, 3.8 
TE ms, 1000 TI ms, 8.6 TR ms (Kumari et al. 2022).

2.4 � Specifications of high performance computing 
(HPC)

The configurations of HPC are Master node (2) and Com-
puter Node (1) of E5-2630 v3 Intel Xeon 2.4 GHz processors 
with 8-core, Hard Disk Capacity of 500 GB; Compute Node 
(2) of Nvidia K20 GPU and 64 GB memory; 1 Cloud node 
of E5-2620 V3@2.4, 6 core processors E5-2620 and 64 GB 
Memory, and Hard Disk Drive of 1 TB (Kumari et al. 2022).

2.5 � Freesurfer

FreeSurfer (2012) is a software package for analysing and 
visualizing structural and functional brain imaging data. It 
has been widely used in analysing the early stages of Alzhei-
mer’s Disease as it is developed as an open-source and cross-
platform program. Also, this software has been primarily 
used in analysing data by including structural T1-weighted 
images and functional imaging data.

The correction of intracranial volume produces better 
outcomes in FreeSurfer. This software provides all the 
various measurements for brain volume and white mat-
ter segmentations on the equivalent MRI scanner. The 

benefit of utilizing software is that when low intensities 
of white matter are computed where any MS abnormalities 
unalter the output. Also, this software provides a com-
plete pipeline of B1 bias field correction, skull stripping, 
and localization of grey and white matter for sMRI data 
acquisition. The gray-white and pial surfaces can also be 
considered when reconstructing cortical surface models. 
Steps for evaluating the processing of global volume in 
FreeSurfer software:

1.	 Creation of directory file Build a directory consisting of 
two files, of which the first one contains a compilation 
of slices from each structure MRI scan. The statistics of 
the second structural scan statistics are specified in the 
second file.

2.	 Conversion of the data The following command is uti-
lized by FreeSurfer to convert the raw data into.mgz 
format. “Recon-all-i < in volume > -s < subject.name > ”

3.	 Simultaneous acquisitions The same command can be 
translated into a different directory if several acquisi-
tions exist for a single subject. Additionally, a single 
representation is created by combining and averaging 
these acquisitions.

4.	 Motion averaging and correction Using the first scan 
analysis, several acquisitions by each subject are first 
registered. Using the command "recon-all-s subject 
name > -motion.cor", where the output from each subject 
is generated from a motion-corrected volume.

Table 1   Summary of 
demographic characteristics for 
ADNI-1, ADNI-2, and ADNI-3 
subjects

Dataset Demographic characteristics AD MCI CN

ADNI-1 Total number of subjects (Male/Female) 62/42 48/45 41/35
Total number of MRI Images 647 467 714
Age (Minimum/Maximum) 68.6/92.7 56.8/91.1 71.4/88.9
FAQ (Minimum/Maximum) (1/27) (2/25) (2/7.5)
MMSE (Minimum/Maximum) (11/27) (17/34) (22/29)
Global CDR (Minimum/Maximum) (0.2/3) (1/4) (− 0.7/1.8
GD Scale (Minimum/Maximum) (1/7.3) (1/10) (0/3)

ADNI-2 Total number of subjects (Male/Female) 57/36 68/33 71/51
Total number of MRI Images 522 411 409
Age (Minimum/Maximum) 67.7/87.2 59.1/90.8 68.6/90.4
FAQ (Minimum/Maximum) (2/25) (2.5/24.5) (2.5/10.5)
MMSE (Minimum/Maximum) (102/28.3) (14.3/32.5) (20.8/29.8)
Global CDR (Minimum/Maximum) (0.4/2.8) (1.2/4.7) (0.8/2.7)
GD Scale (Minimum/Maximum) (1.2/6.8) (1/9) (0/2.7)

ADNI-3 Total number of subjects (Male/Female) 52/41 60/32 43/30
Total number of MRI Images 412 303 308
Age (Minimum/Maximum) 70.7/90.3 55.7/89.2 69.6/93.5
FAQ (Minimum/Maximum) (2/25.5) (1.3/23.8) (2.5/6.5)
MMSE (Minimum/Maximum) (9/26.5) (15.5/32.8) (20.7/28.4)
Global CDR (Minimum/Maximum) (0/2.8) (1.3/4.7) (0.3/1.9)
GD Scale (Minimum/Maximum) (1.8/6.8) (1.6/9.6) (0/2.7)
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5.	 Quantization and Adjustment of Intensities The original 
orig.mgz file has been converted into a series of steps of 
histogram equalizations of a series of Talarich space.

6.	 Skull stripping A watershed technique that strips away 
background noise from the skull section and produces a 
BrainMask volume that utilizes the T1-weighted inten-
sity corrected data as input.

7.	 Segmentation of Cortical and Subcortical regions Fol-
lowing the generation of the BrainMask volume, sub-
cortical characteristics are processed, which could take 
up to 16 h. An aseg.mgz file is created during the pre-
processing stage, where the statistics file is produced.

8.	 Segmentation of White Matter In the final processing 
stage, the input volume has been standardized and then 
segmented to produce the white matter volume (wm.
seg.mgz). The labels provided from the ASEG file are 
then employed for filling the ventricles. After that, mri 

fill distinguishes the two hemispheres, creating a filled 
binary mask labeled as mgz.

The values of age, estimated intracranial volume (eTIV), 
and Magnetic Field Strength are measured to develop Linear 
Regression (LR) models to compute the cortical regions of 
the whole brain region. Here, 12-fold cross-validation (CV) 
has been employed to acquire the normalized white and grey 
matter values by using the DKT atlas to prevent overfitting 
issues.

3 � Proposed graph attention network (GAT)

Graph Attention Networks (GATs) offer several advantages 
over graph-based and non-graph-based models. Here are 
some of the key benefits of GAT, such as adaptive feature 
aggregation, can efficiently handle large graphs due to their 
localized attention mechanism, flexibility in handling both 
homogeneous and heterogeneous graphs, robustness to 
graph irregularity, provide interpretable attention weights, 
and adaptation to graph generation tasks. Classifying the 
graph node has become essential for learning the new fea-
ture representation for each node over multiple layers. In 
the proposed network, we have introduced the single graph 
attention layer for constructing the GAT by aggregating the 
information by a central node from its neighbors.

Step 1: (Single Graph Attention Layer) It is the primary 
layer while formulating the different complex architecture 
of GAT. The reference (Bahdanau et al. 1409) shows that the 
attention mechanism has been closely related to the designed 
framework. In this layer, the input layer is defined as H = [ ���⃗F1

, ���⃗F2 , ���⃗F3 , …, ���⃗Fn ], ����⃗HK  Ɛ Rf  , where n denotes the number of 
nodes and f signifies features present in each node. The out-
put of the layer generates a different set of features (f ∕) pre-
sent in the node, H/ = [ ���⃗F∕

1
 ,    ���⃗F∕

2
, ���⃗F∕

3
,… ,

���⃗
F
∕
n ].

A Linear Transformation of at least one learnable param-
eter is required to obtain expressive power to transform 
the input feature vector into a high-level feature vector. A 
weight Matrix is defined as Wi Ɛ Rf ∕×f  has been applied to 
each node in the input layer. The self-attention mechanism 
has been used in the next step for more accurate results for 
particular nodes. This method is known as the local shared 
attention mechanism, which is represented as a linear trans-
formation weight matrix for calculating attenuation coef-
ficients as given in Eq. 1.

Step 2 (Determination of the value of the nodes) The 
attenuation coefficients determine the level of importance 
given at features present in node i to node k. Next, the graph 

(1)𝛾Ki = A
(
W ���⃗Hk,W

���⃗Hi

)
where A ∶ Rf ∕×f

Fig. 1   Flow diagram of the total procedure of the study
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structure is inserted into the local attention mechanism by 
dropping the insignificance values, or the values are normal-
ized of attenuation coefficients where the optimal value �Ki 
Is computed for the nodes i Ɛ Pj. The j indicates the 8 neigh-
bourhood values of node i in the graph, as shown in Fig. 2.

The values obtained after computing the �Ki , the first 
order attention coefficients of the nodes are obtained. There-
fore, the first order nodes are normalized across the Regions 
of Interest (Pj) by applying the softmax function as shown 
in Eq. 3. The softmax function is a crucial component for 
obtaining meaningful class probabilities, enabling model 
interpretation, training, and performance evaluation in mul-
ticlass classification tasks.

Step 3: (Normalization of Attenuation coefficients) In the 
experiments conducted above, the local shared attention mech-
anism �⃗A consists of single layer feedforward neural network 
by assigning the different values of the weight matrix Wi Ɛ 
R2×f  . Since the variations in the pixel value are less when we 

(2)ni =

∑8

p=1
nip

8

(3)�Ki = softmax(�Ki) =
exp

�
�Ki

�

∑
l∈Pj

exp
�
�Ki

�

consider ROI at different locations in the image, the feedfor-
ward neural network produces satisfactory results. In the last 
step, for each ROI (Pj), the average computed node �������⃗F

∕

1avg
 is 

calculated by applying the Leaky RELU function. The attenu-
ation coefficients obtained by the first order nodes are further 
computed using a nonlinearity function, i.e., Leaky RELU 
with a negative slope of 0.3, expressed as in Eq. 4.

where || represents the concatenation operation and .T indi-
cates transposition. The normalized �N

Ki
 attention coefficients 

are given in Fig. 3. The threshold value for obtaining attenu-
ation coefficients is 0.8.

Step 4: (Multi-Headed Mechanism) According to Vaswani 
et al. (2017), a multi-headed mechanism has been applied for 
the learning process of self attenuation with K = 4 heads which 
is given in Fig. 4.

The features present in each node are concentrated, result-
ing in the output features mathematically given in the Eqn.

(4)𝛾N
Ki
=

exp(LRELU( ���⃗AT [W ����⃗HK��W ���⃗Hi]))

∑
exp(LRELU( ���⃗AT [W ����⃗HK��W ���⃗Hi]))

(5)
���⃗
F
∕

1
=

4∏

K=1

𝜎

(
8∑

j=2

𝛾K
kj
WK ��⃗Fj

)

Fig. 2   Representation of the 
nodes in the GAT network

Fig. 3   Normalised coefficients 
are obtained through GAT 
networks



937Int J  Syst  Assur  Eng  Manag (March 2024) 15(3):931–949	

1 3

where �K
kj

 are the normalized attenuation coefficients, WK 
represents the weight matrix and 

∏
 denotes the concatena-

tion. After calculation of ���⃗F∕

1
 node, other nodes such as ���⃗F∕

2
 , 

���⃗
F
∕

3
 , ….., ���⃗F∕

n  are computed similarly.

3.1 � Structure of the proposed deep convolutional graph 
neural networks (DCGNN)

In this section, the network of DCGNN consists of 3 GCN 
layers, a Leaky RELU activation function, and a drop out 
of 0.5, described in Fig. 5.

3.1.1 � 1st GNN layer

Since the outputs nodes generated from GAT networks, 

i.e., ���⃗F∕

1
 , ���⃗F∕

2
 , ���⃗F∕

3
 , ….., ���⃗F∕

n  has been divided into blocks of 
two, three, and four up to n/2 to process the complexity 
generated by the nodes. Five convolutional layers, three 
pooling layers, and four dropout layers of rate 0.5 have 
been applied in this layer. In addition, three dropout lay-
ers of rate 0.5 have been added in intermediate steps for 
extracting the features from the surrounding Regions of 
Interest (ROI). A 3 × 3 kernel size has been kept fixed 
for the 1st and 2nd convolutional layer, which has been 
applied to 32 kernels, whereas for other convolutional lay-
ers, a 3 × 3 kernel size has been kept standard, which is 
used for each of the 64 kernels. In addition, max-pooling 
layers are incorporated after the 2nd convolutional layer 
to enhance filtered node processing. The model architec-
ture consists of 64 nodes in the 1st convolutional layer, 

32 in the 2nd layer, and 16 in the 3rd layer, as illustrated 
in Table 2.

3.1.2 � 2nd GCN layer

In this layer, the outputs generated from the previous layer 
have been divided into three groups as input to the 1st con-
volutional layer. For extracting minute features present in 
each node, a kernel size of 5 × 5 has been applied to each 
of the 48 kernels. After that, the kernel size of 3 × 3 has 
kept fixed for the 2nd layer consisting of 32 kernels follow-
ing a max pooling layer. For the 3rd layer, 2 × 2 kernel size 
has been applied to 20 kernels. A dropout of 0.5 is utilized 
between the layers so that extra irreverent features can be 
eliminated for faster node processing. Here, 32 nodes are 
used in the 1st convolutional layer, then 16 nodes in the 2nd 
layer, then 8 nodes in the 3rd layer. Lastly, a fully connected 
layer has been added with 700 nodes with one node as out-
put, shown in Table 3.

3.1.3 � 3rd GCN layer

Single node are generated from each of the blocks of the 
previous layer and are fed as input to 1st convolutional layer, 
where 64 nodes are present. Since the image complexities 
are less, only two convolutional layers are sufficient for pro-
cessing each feature in the nodes. Here, 2 × 2 kernel size has 
been utilized for 20 and 10 kernels, respectively. Lastly, a 
fully convolutional layer has been added in the end with 500 
nodes and 3 nodes as output with a Leaky RELU activation 
function shown in Table 4.

3.2 � Adaptive stochastic gradient descent (ASGD) 
optimization technique

The Adaptive Stochastic Gradient Descent (ASGD) opti-
mization technique offers several advantages in training 
machine learning models. ASGD dynamically adapts the 
learning rates based on the historical gradients, resulting in 
faster convergence and improved robustness to noisy gradi-
ents. It enhances the model’s generalization capabilities by 
preventing overfitting and efficiently handles sparse data, 
leading to more efficient updates and reduced sensitivity 
to hyperparameters. ASGD’s adaptability to distributed 
computing environments makes it well-suited for paral-
lelization, enabling faster training of large-scale models. 
Moreover, ASGD is a widely-used and well-studied optimi-
zation approach in the literature, providing researchers with 
a reliable and established choice for training a wide range 
of machine learning algorithms. For updating the weights of 
the proposed Deep Convolutional Graph Neural Networks, 

Fig. 4   Multi-headed mechanism of self attenuation with K = 4 heads
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the optimization technique named Adaptive Stochastic Gra-
dient Descent has been applied to generate two optimized 
nodes at the end of blocks created by 1st GCN Layer and 
one optimized node by the end of 2nd GCN layer. Here, the 
SGD optimization technique has been applied to 1st and 2nd 
GCN layers, shown in Fig. 6.

From Fig. 6a, it has been deduced that the  ���⃗F∕
n  nodes are 

formed from GAT networks in n-dimensional form and 
given to the adaptive algorithm as inputs. From each of the 
blocks, two nodes are created, which are combined into 

one node, i.e., �������⃗F
(p)

i
n∕

2
g
 as the predicted node. The value of 

this node is compared with the desired value, �������⃗F
(d)

i
n∕

2
g
 which 

gives the error rate that is used for updating the weights of 
the nodes, i.e., ���⃗W (1) = [ ���⃗w1, ���⃗w2,………… , ���⃗wg ]. In Fig. 6b, 
the generated nodes formed the first layer are given in the 
form of ���⃗Fh = [

�����⃗
F
∕

1g
,
�����⃗
F
∕

2g
 , ………, �����⃗F

∕
n

2
g
 ] that are given to the 

inputs to the adaptive algorithm. Here, the predicted out-
put node of the 2nd layer is shown as �������⃗F

∕(h)

ih
 whereas the 

Fig. 5   Overall structure for the proposed DCGNN Network



939Int J  Syst  Assur  Eng  Manag (March 2024) 15(3):931–949	

1 3

desired output node as �������⃗F
∕(d)

ih
 gives an error difference 

between desired and predicted nodes. The SGD algorithm 
uses the error difference to update the values of the 

weights of the nodes,  which are given as ���⃗W

(2) = [ ���⃗w1, ���⃗w2,………… , ���⃗wh].

4 � Simulation results and discussion

Different K-features are optimized from the T1-weighted 
3D MRI images, which are stored in each node from axial, 
sagittal, and coronal planes. These features act as inputs to 
the nodes of the proposed Deep Convolutional Graph Neural 
Networks (DCGNN) where three binary classifications such 
as AD vs MCI, MCI vs CN, and AD vs MCI, and one mul-
ticlass classification have been proposed. Here, 715 subjects 
have been considered for our study, which has been acquired 
from the ADNI-1, ADNI-2, and ADNI-3 datasets. Real-time 
experiments have been carried out on High Performance 
(HPC) computing with the specifications of 3 Nos. of Nvidia 
K20 GPU processor with 1.5 TB memory disk, 12 Intel CORE 
i10 processors, and 16 core of E5-2630 Intel Xeon 3.7 GHz 
processors. Here, the Adaptive Stochastic Gradient Descent 
(ASGD) optimization technique has been applied at the 1st 
and 2nd GCN layers with different learning rates. The batch 
size has kept at an optimum value so that differentiation of 
gradients becomes constant after executing several epochs. 
For all experiments, the learning rate has been varied so that 
overfitting does not occur. The dataset has been randomly dis-
tributed so that 70% of total images has been simulated for 
training, 10% of total images for validation and 20% for testing 
purposes. A confusion matrix has been created by calculating 
the values of Sensitivity, Specificity, and Classification Accu-
racy from the testing samples for three binary classifications, 
i.e., AD vs CN, MCI vs CN, and AD vs MCI, and multiclass 
classification, AD vs CN vs MCI as shown in Fig. 7.

4.1 � Performance of the evaluation metrics

Diagonal elements of the Confusion Matrix (CM) represent 
the different measures where the classifier correctly predicts to 
measure the proposed algorithm’s performance. The elements 
are further separated into two groups, consisting of one group 
containing the elements with the True Positive (TP) and True 
Negative (TN) and another group consisting of False Positive 
(FP) and False Negative (FN) as non-diagonal elements. There 
are other parameters for measuring the efficiency of the pro-
posed algorithm, such as Classification Accuracy (CA), Sen-
sitivity (SEN), Specificity (SP), Precision (PR), and F1-Score, 
which is given by mathematical expressions as shown below.

(6)CA =
TP + TN

FP + FN + TP + TN

Table 2   Structure of 1st GCN layer along with its parameters

Layer_name Shape of the output Parameters

Convolutional layer_1 (32, 32, 36) 936
Convulational_layer_2 (28, 28, 32) 28,832
Maxpooling_1 (14, 14, 32) 0
Dropout_1 (14, 14, 32) 0
Convolutional layer_3 (12, 12, 64) 5824
Convolutional layer_4 (10, 10, 64) 11,584
Maxpooling_2 (5, 5, 64) 0
Dropout_2 (5, 5.64) 0
Convolutional layer_5 (2, 2, 64) 7744
Maxpooling_3 (1, 1, 64) 0
Dropout_3 (1, 1, 64) 0
Flatten_1 (64) 0
Dense_1 (256) 16,640
Dropout_4 (256) 0
Dense_2 (2) 1024

Table 3   Structure of 2nd GCN layer along with its parameters

Layer_name Shape of the output Parameters

Convolutional layer_6 (28, 28, 32) 1232
Convulational_layer_7 (24, 24, 32) 9248
Maxpooling_4 (12, 12, 32) 0
Dropout_5 (12, 12, 32) 0
Convolutional layer_8 (10, 10, 64) 5184
Maxpooling_5 (5, 5, 64) 0
Flatten_2 (64) 0
Dense_3 (700) 44,800
Dropout_5 (700) 0
Dense_4 (1) 708

Table 4   Structure of 3rd GCN layer along with its parameters

Layer_name Shape of the output Parameters

Convolutional layer_9 (14, 14, 30) 110
Maxpooling_4 (7, 7, 30) 0
Dropout_5 (7, 7, 30) 0
Convolutional layer_8 (4, 4, 15) 605
Maxpooling_5 (2, 2, 15) 0
Flatten_2 (15) 0
Dense_3 (500) 45,015
Dropout_5 (500) 0
Dense_4 (3) 1503
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(7)SP =
TN

TN + FN

(8)SEN =
TP

TP + FP

(9)PR =
TP

TP + FN

(10)F1 − Score =
2TP

2TP + FP + FN

Fig. 6   ASSS a, b Updation 
of weights in the GCN layer 
through the proposed DCGNN 
network

Fig. 7   Confusion matrix for a 
AD vs CN b MCI vs CN c AD 
vs MCI d AD vs MCI vs CN 
classifications



941Int J  Syst  Assur  Eng  Manag (March 2024) 15(3):931–949	

1 3

Different optimal features from the 3D T1-weighted MRI 
images are extracted from Freesurfer software, which act 
as separate nodes in inputs to the proposed DCGNN net-
works. Tensor Flow libraries are installed on the PC where 

the specifications of Windows11 Operating system, 1 TB 
installed harddisk memory, IntelCore 9th Generation with 
a clock frequency of 2.60  GHz processor by including 
6-core and RAM memory of 16 GB RAM where real-time 
experiments are executed on it. The summary of three binary 
classifications and one multi class classification report are 
shown in Table 5.

From Table 5, it is deduced that the classification accu-
racy percentage of the ADNI-1 dataset is the lowest as 
compared to ADNI-2 and ADNI-3 datasets. In the ADNI-1 
dataset, there are non-uniformities such as T1 correction 
and irregularities in the T1W1 MRI images’ pixels, result-
ing in more significant complexities while processing. As a 
result, the other parameters, such as Specificity, Sensitivity, 
Precision, and F1Score values, are affected. In the ADNI-2 
dataset, less uniformities are present due to pre-processing 
of the images, resulting in higher classification accuracy and 
other parameters of all three binary and multiclass classi-
fications. However, the highest classification accuracy has 
been achieved due to less distortion of the images acquired 
from the ADNI-3 dataset. Also, the T1-weighted images 
have good clarity in the pixels, resulting in smooth image 
processing.

In evaluating the efficiency of the proposed DCGNN 
model, Region of Operating (ROC) curves are drawn for 
each of the binary classifications, i.e., AD vs CN, AD vs 

Table 5   Classification report for three binary and multiclass classi-
fication

Dataset Parameters AD vs CN CN vs 
MCI

MCI vs 
AD

CN vs 
MCI vs 
AD

ADNI-1 CA 89.24 80.68 69.14 94.35
SP 69.47 73.37 82.23 86.67
SENS 80.55 75.28 81.14 83.34
PR 79.94 69.81 77.65 75.77
F1-SCORE 73.34 75.05 78.28 82.26

ADNI-2 CA 91.18 82.23 72.28 95.68
SP 72.26 77.51 80.77 88.37
SENS 83.33 73.86 80.35 81.28
PR 81.77 72.23 75.55 74.73
F1-SCORE 70.24 74.11 80.18 83.76

ADNI-3 CA 93.34 80.67 75.1 94.37
SP 70.65 73.38 78.66 90.34
SENS 81.17 71.14 75.39 77.61
PR 80.23 68.82 78.36 70.39
F1-SCORE 69.95 77.68 81.17 82.21

Fig. 8   ROC curves for three binary classifications and multiclass classification for a–d ADNI-1 e–h ADNI-2 (i)–(l) ADNI-3 datasets



942	 Int J  Syst  Assur  Eng  Manag (March 2024) 15(3):931–949

1 3

MCI, MCI vs CN, and multiclass classification, MCI vs 
CN vs AD, which has been considered as one of the vital 
parameters. From each of the ROC curves, the accuracy of 
the ROC curve (AUC-ROC) has been determined as shown 
in Fig. 8. The X-axis of the ROC curve represents the True 
positive rate (TPR), whereas Y-axis denotes False Positive 
Rate (FPR) as shown in Fig. 8.

From Fig.  8, the AUC-ROC accuracy percentage is 
around 91% for AD vs CN for ADNI-2 dataset, whereas for 
ADNI-1 and 3 datasets the AUC-ROC accuracy has been 
calculated as 95%. For AD vs MCI binary classification, 
AUC-ROC accuracy for ADNI-1 and ADNI-2 is around 85% 
and 91% for ADNI-3 dataset. It is observed from the graphs 
of ROC that 95% AUC-ROC is obtained for multi class in 
all of the three ADNI datasets.

4.2 � Performance of the proposed DCGNN model

The proposed DCGNN model has been constructed based on 
GAT networks, where the ASGD optimization technique has 
been applied to have updated weights for each output node 
in each of the three GCN layers. The nodes are formed in 
such a way that the information about the optimal features 
is stored to classify AD, CN, and MCI subjects. Here, 107 

optimal features are extracted from the different Region of 
Interest (ROI) in 3D T1-weighted MRI scans considered for 
training 2863 images, validating 409 images, and testing 819 
images. Tensor flow 2.0 libraries have been applied in this 
model to get higher training and validation accuracy while 
computing the loss score, as shown in the Fig. 9.

From the Fig. 9, it can be inferred that training and valida-
tion accuracy, and loss score, are calculated at each epoch 
where the simulation has been carried out for 40 epochs. 
Moreover, the proposed model does not overfit because 
a slight difference has been observed during training and 
validation accuracy. The values of the training, validation 
accuracy, and losses are computed where the variations 
of ± (1–3) % occurred, as shown in Fig. 9. For each of the 
layers of GCN, the training and validation accuracy has been 
computed in Table 6.

From Table 6, it has been observed that the number of 
layers in the GCN increases from Layer-I to Layer-III, both 
training accuracy and validation accuracy generally improve. 
This indicates that deeper GCN architectures can learn more 
complex and discriminative representations, leading to better 
performance on the training and validation datasets. With 
deeper layers, the gap between training and validation accu-
racy tends to decrease. In Layer-I, the difference between 
training accuracy (88%) and validation accuracy (79%) is 
significant, suggesting some overfitting level due to irregu-
larities in the pixels of 3D T1 Weighted MRI images. How-
ever, as we move to Layer III, the training accuracy (97%) 
is still higher. Still, the validation accuracy (91%) is closer 
at the end of 10 epochs, indicating that the deeper model is 
generalizing better to unseen data. Also, it can be observed 
that in Layer-III, the validation loss (3%) is smaller than the 
training loss (10%), which indicates that the model general-
izes well to unseen data during the training process. With 
this value, three binary classification tasks, such as AD vs 
CN, MCI vs CN, MCI vs CN, and multiclass classification, 
AD vs CN vs MCI, have been carried out, described in the 
subsequent sections.

4.2.1 � Performance of AD vs CN subjects

From the two classes, various 3D T1 weighted scans have 
been taken from three planes for all three datasets, where 

Fig. 9   Training and Validation accuracy and loss graphs

Table 6   Summary of all GCN layers with different scores of training 
and validation datasets

S. no GCN layer Training 
accuracy 
(%)

Validation 
accuracy 
(%)

Training 
loss (%)

Valida-
tion loss 
(%)

1 Layer-I 88 79 31 11
2 Layer-II 90 85 21 7
3 Layer-III 97 91 10 3
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70% of the total images have been trained for training pur-
pose, 10% for validating the images, and the rest, 20% has 
been kept for testing purpose. In this dataset, all 107 opti-
mal features are extracted from the hippocampal area, left 
caudate, right caudate, volume of right and left Cerebellum 
White Matter, and Surface Area of Inferior Temporal has 
been considered. By applying MMSE, FAQ, and Global 
CDR values, all the features are normalized in the FreeSurfer 
software, where each feature has been trained and tested in 
the form of the graph as shown in Fig. 10.

Based on the information presented in Fig. 10, the aver-
age Classification Accuracy (CA) is 91.25%. The highest 
accuracy is achieved using 24, 38, 39, 44, 90, 91, 97, and 
98 features. These selected features are then fed into the 
proposed DCGNN deep learning model to achieve the best 
classification accuracy results while considering only rel-
evant features and eliminating redundancy.

To reduce the high-dimensional feature vector, a statisti-
cal test, specifically the t-student test, has been performed. 
This test helps to efficiently decrease the feature vector 
dimensions, making the computation more manageable and 
maintaining the model’s performance while reducing com-
putational complexity.

4.2.2 � Performance of AD vs MCI subjects

The MRI scans from MCI patients have less in number in all 
three ADNI datasets, resulting in classifying MCI affected 
patients from AD. The fewer MRI scans are due to the simi-
lar symptoms experienced by AD patients. However, large 
differences are observed in the frontal lobes portion of the 
MCI brain, making it more challenging to derive the solu-
tion. To overcome the above limitations, the proposed model 
is first trained on CN vs AD dataset and then tested on AD 
vs MCI datasets. For hypertunning the proposed model, 
we have set the dropout of 0.3 at the initial layers and then 
retrained the model by adding some additional features from 

the MCI dataset. The training and testing accuracy are cal-
culated at each feature, as shown in Fig. 11.

The analysis of Fig. 11 reveals that the testing accuracy 
exhibits significant fluctuations compared to the training 
accuracy. This discrepancy can be attributed to the limited 
availability of MRI scans and the uneven distribution of 
pixels in T1-weighted MRI images. Due to the scarcity of 
testing data and skewed representation of pixel values, the 
testing accuracy experiences more significant variability 
during evaluation.

Among the different feature sets, the highest testing accu-
racy is observed when utilizing 18, 19, 31, 35, 56, 62, 63, 
70, 72, 73, 78, 83, 90, 93, 94, and 99 features. These opti-
mized feature sets are stored as nodes, which undergo fur-
ther optimization through Graph Attention Networks (GAT) 
networks.

The output of these optimized nodes serves as input to 
the proposed Deep Convolutional Graph Neural Network 
(DCGNN) model, which aims to achieve the desired Clas-
sification Accuracy (CA). By leveraging GAT and DCGNN, 
the model seeks to improve the overall accuracy of the clas-
sification task despite the challenges posed by limited MRI 
scans and pixel distribution irregularities.

4.2.3 � Performance of CN vs MCI subjects

Since the obtained images from MCI subjects are less clear 
in pixels, it is difficult to process these images to get the the 
required classification accuracy. Therefore, these images are 
further pre-processed by making appropriate slice correc-
tions particularly in the hippocampus, left thalamus, right 
cerebellum cortex, and volume of Ventral DC to avoid over-
fitting. As a result, approximate equal distribution of the data 
is constructed for both classes to have a smooth operation. 
Here, the proposed model has been trained for 1432 images, 

Fig. 10   Training and Testing graphs for AD vs NC subjects

Fig. 11   Training and Testing Accuracy graphs for AD vs MCI data-
set
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validating 205 images and 410 images for testing purposes. 
For each of the 107 features obtained, training and testing 
accuracy graphs have been plotted in the Fig. 12.

Based on the findings in Fig. 12, it is evident that the 
classification accuracy tends to be slightly higher when 
using a lower number of features, whereas it decreases as 
the number of features increases. Additionally, significant 
variations are observed in the training and test datasets, indi-
cating potential challenges in generalization.

To achieve the desired level of classification accuracy, an 
average testing accuracy of 68.32% is obtained by selecting 
a specific set of features, namely 31, 38, 42, 49, and 55, and 
storing them as nodes. Subsequently, these nodes undergo 
further processing using Graph Attention Networks (GAT). 
The application of GAT allows for removing redundant fea-
tures, streamlining the feature representation and potentially 
improving the overall classification accuracy.

4.3 � Comparison of training, validation, and testing 
simulation time

For all the ADNI datasets, 70% of the total data has been 
used for training, 10% of the total data for validating the 
samples whereas remaining 20% for samples testing. 

Training is the total time needed to complete one epoch of 
the proposed DCGNN model. However, training on more 
powerful hardware, such as GPUs or TPUs, can reduce train-
ing time significantly. Here, the GPU is turned on while 
processing the images, which shortens the time needed to 
achieve the desired accuracy compared to when the GPU is 
switched off. A shorter training time can result in optimal 
use of computational resources.

Validation time is an essential part of the machine 
learning process, as it helps ensure that the model can gen-
eralize well to new data. The validation time for a machine 
learning model is the time required to evaluate the model’s 
performance on a validation dataset. During training, a 
portion of the dataset is typically set aside as a validation 
dataset, which is used to evaluate the DCGNN model’s 
performance during training. This is important to prevent 
overfitting, which occurs when a model is too complex and 
learns to fit the training data too closely, resulting in poor 
performance on new data.

It’s important to note that testing time is a critical part 
of the machine learning process, as it provides a final 
evaluation of the proposed model’s performance before 
it’s deployed in a real-world setting. It’s crucial to ensure 
that the testing dataset represents the real-world data 
that the DCGNN model will encounter to ensure that the 
model will perform well in practice. The testing time for 
a machine learning model is the time required to evaluate 
the model’s performance on a testing dataset. A summary 
of the training, validation, and testing times for all three 
ADNI datasets has been shown in Table 7.

Table 7 shows that GCN-1 consistently has the short-
est training time across all ADNI datasets, followed by 
GCN-2, GCN-3, and DCGNN. This suggests that GCN-1 
is the most computationally efficient during the train-
ing phase. As the dataset size increases from ADNI-1 to 
ADNI-3, the training time for all models also increases. 
This is expected since larger datasets require more com-
putational resources and time for model training. GCN-1 
and GCN-2 have similar validation times, while GCN-3 
and DCGNN generally need more time for validation. As 

Fig. 12   Training and testing accuracy graphs for CN vs MCI dataset

Table 7   Training, validation, 
and testing time for all three 
ADNI datasets

ADNI datasets Performance measure (sec) GCN-1 GCN-2 GCN-3 DCGNN

ADNI-1 Training time 566 413 217 1196
Validation time 412 392 256 1060
Testing time 433 362 307 1102

ADNI-2 Training time 728 617 432 1777
Validation time 527 418 391 1336
Testing time 623 475 337 1435

ADNI-3 Training time 835 783 706 2324
Validation time 647 568 483 1698
Testing time 606 503 483 1592
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with training time, the validation time increases with the 
dataset size, with ADNI-3 having the longest validation 
time. Similar to validation time, GCN-3 and DCGNN 
have longer testing times than GCN-1 and GCN-2. While 
there is some variation, the testing time remains relatively 
consistent across different datasets. GCN-1 consistently 
outperforms the other models in terms of both training 
and validation times. It is the most efficient model across 
all datasets. GCN-2 generally performs better than GCN-3 
and DCGNN regarding training and validation times. 
DCGNN tends to have the longest training and validation 
times among all models.

4.4 � Comparison of performance metrics with other 
networks

Different real-time experiments have been conducted by con-
sidering all the three axes of T1-weighted 3D MRI images 
from three other ADNI datasets. Here, the three standard 
Deep Neural Networks, such as Efficient 3DNET (Cai et al. 
2021), Squeeze 3DNET (He et al. 2022), and GoogLeNET 
(Ak et al. 2022), have been applied to ADNI-1, ADNI-2, 
and ADNI-3 datasets. Here, the parameters of the Confu-
sion Matrix, such as Sensitivity, Specificity, Precision, and 
F1-score, are used in comparing the DCGNN model with 
four cutting-edge techniques. These metrics provide valuable 
insights into the model’s performance in correctly identify-
ing positive and negative instances and its overall accuracy 
and balance between precision and recall. By evaluating 
these parameters, all three binary classifications, i.e., AD 
vs CN, CN vs MCI, MCI vs AD, and one multiclass classi-
fication, AD vs MCI vs CN, in all three ADNI datasets have 
been shown in Table 8. The activation function is prominent 
in determining the performance of the proposed DCGNN 
network, Efficient 3DNet, Squeeze3DNET, and Goog-
LENET. Here, three activation functions, such as RELU, 
LeakyRELU, and sin, have been applied, shown in Table 8.

Table 8 shows that the models using the sin activation 
function tend to perform better in terms of CA, SP, SENS, 
PR, and F1-Score across most disease groups compared to 
models using the RELU and LeakyRELU activation func-
tions. The sin activation function appears to provide a good 
balance between sensitivity and specificity, leading to high 
F1-Scores, which are beneficial for imbalanced classification 
tasks. All models achieve relatively high CA, SENS, PR, and 
F1-Scores for the AD vs CN classification task, suggesting 
good discrimination between Alzheimer’s disease (AD) and 
control (CN) groups. The MCI vs AD classification task 
generally yields lower accuracy and F1-Score compared to 
the AD vs CN task, which can be expected as distinguishing 
between mild cognitive impairment (MCI) and AD might be 

more challenging. The CN vs MCI and AD vs MCI vs CN 
classification tasks show varying performance, with some 
models performing better than others depending on the dis-
ease groups involved. The proposed DCGNN consistently 
achieves competitive performance across all disease groups 
and activation functions, with high CA, SP, SENS, PR, and 
F1-Score values. Efficient 3DNET, Squeeze3DNET, and 
GoogLENET models also demonstrate reasonable perfor-
mance, but the proposed DCGNN consistently outperforms 
them.

4.5 � Comparison with other existing techniques

One of the biggest challenges in diagnosing AD is catch-
ing it at the onset form. Most of the previous research has 
resulted in reliable classifications to determine if an indi-
vidual is suffering from AD or its the normal state (Gupta 
et al. 2019). However, the binary classification of AD vs 
MCI and MCI vs NC is still an issue that needs addressing in 
the community of Alzheimer’s Disease. The outcomes from 
the proposed work for classifying three binary categories of 
AD vs MCI, MCI vs CN, and NC vs AD, and multi-classi-
fication, i.e., AD vs MCI vs CN, are shown in Table 9. The 
simulation results obtained have been compared with other 
state-of-the-art techniques by considering 3D T1 weighted 
MRI biomarker and cognitive assessment values. It seems 
intuitive that discriminating between NC and AD should be 
simpler to do, and this is supported by our results, which 
indicate that the binary classification of AD vs NC proved 
100% accurate. The other two binary classifications, AD vs 
MCI and NC vs MCI have accuracy rates of 95% and 91%, 
respectively. This reduction in accuracy is due to the features 
obtained after the segmentation of cortical and subcortical 
regions and the SUVR being less distinct for MCI and AD 
subjects when compared to the detection of AD vs NC.

The proposed DCGNN model offers several key advan-
tages over existing methods for graph-based learning tasks. 
This model excels at learning expressive representations 
of graph-structured data using deep convolutional layers, 
allowing it to capture complex patterns and dependencies 
among nodes and edges. It efficiently incorporates spatial 
information and considers local neighborhood interactions, 
making it highly effective in extracting meaningful features 
from varying-sized graphs. DCGNN’s adaptability to dif-
ferent tasks, robustness to graph irregularities, and reduced 
computational complexity further enhance its versatility. 
Additionally, DCGNN has demonstrated state-of-the-art 
performance on benchmark datasets, making it a power-
ful and promising model for graph-based learning applica-
tions, such as node classification, graph classification, and 
dynamic graph generation.
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Table 8   Comparison of 
performance metrics using three 
standard models in three ADNI 
datasets

Activation function Models Classification CA SP SENS PR F1-score

RELU Efficient 3DNET AD vs CN 88.13 69.75 80.24 80.33 70.88
MCI vs AD 70.25 80.51 79.33 78.75 82.86
CN vs MCI 81.25 75.22 81.75 69.33 88.91
AD vs MCI vs CN 94.67 85.25 80.67 75.75 75.25

Squeeze3DNET AD vs CN 90.25 70.28 78.25 78.75 76.28
MCI vs AD 73.75 82.37 77.93 80.24 81.33
CN vs MCI 80.75 77.68 82.17 72.45 77.47
AD vs MCI vs CN 93.34 80.29 80.38 77.39 81.35

GoogLENET AD vs CN 88.03 67.27 80.25 78.85 74.25
MCI vs AD 68.25 79.71 79.94 81.24 81.82
CN vs MCI 80.38 74.78 77.35 75.26 77.63
AD vs MCI vs CN 94.13 85.27 80.84 73.82 79.87

Proposed DCGNN AD vs CN 89.24 68.23 79.26 81.13 75.03
MCI vs AD 71.48 80.64 78.86 79.67 80.25
CN vs MCI 82.67 73.11 79.91 70.45 76.33
AD vs MCI vs CN 95.25 88.33 81.27 76.75 80.75

LeakyRELU Efficient 3DNET AD vs CN 86.27 68.82 78.52 82.24 73.67
MCI vs AD 73.71 80.24 77.48 77.67 70.41
CN vs MCI 80.22 70.51 76.37 68.29 74.47
AD vs MCI vs CN 94.64 86.84 80.31 75.13 79.93

Squeeze3DNET AD vs CN 85.61 66.73 77.48 79.78 70.28
MCI vs AD 72.35 78.25 80.67 75.27 77.61
CN vs MCI 81.43 71.38 75.56 65.28 76.79
AD vs MCI vs CN 92.68 85.27 81.74 77.74 80.56

GoogLENET AD vs CN 86.24 64.35 79.64 80.27 73.35
MCI vs AD 71.25 77.45 78.81 76.32 78.53
CN vs MCI 80.67 68.18 72.25 68.81 77.74
AD vs MCI vs CN 94.25 85.29 81.37 76.25 81.82

Proposed DCGNN AD vs CN 88.28 67.25 80.38 83.39 74.25
MCI vs AD 73.37 81.37 81.75 78.27 79.75
CN vs MCI 83.78 72.23 78.82 69.25 78.35
AD vs MCI vs CN 95.75 87.17 86.75 78.34 82.81

sin Efficient 3DNET AD vs CN 88.37 67.31 80.35 80.17 74.78
MCI vs AD 74.82 77.57 78.81 78.67 80.39
CN vs MCI 78.81 72.25 81.76 69.75 78.28
AD vs MCI vs CN 90.18 86.94 83.69 80.11 81.17

Squeeze3DNET AD vs CN 87.75 67.52 78.57 80.37 73.38
MCI vs AD 74.67 79.18 79.17 78.25 78.44
CN vs MCI 78.82 72.42 80.44 68.48 77.71
AD vs MCI vs CN 91.17 84.67 83.78 81.71 80.62

GoogLENET AD vs CN 88.58 66.58 78.87 78.49 72.21
MCI vs AD 73.37 78.12 79.69 77.23 78.37
CN vs MCI 78.45 71.32 80.53 67.97 77.44
AD vs MCI vs CN 93.67 86.83 83.82 80.83 78.82

Proposed DCGNN AD vs CN 90.75 68.28 81.27 82.33 75.27
MCI vs AD 75.71 80.47 80.34 79.78 81.71
CN vs MCI 80.64 73.38 82.27 70.71 79.86
AD vs MCI vs CN 94.13 88.27 84.11 82.75 83.34
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5 � Conclusion and future scope

In this paper, Graph Attention Networks (GAT) have been 
proposed for processing the extracted features from 3D 
1.5 T and 3 T magnetic field strength MRI images from 
three different ADNI subjects as nodes which can given as 
inputs. A Single Graph Attention Layer has been applied 
for faster computation of extracted features present in 
the nodes to have optimized nodes for giving inputs to 
the proposed DCGNN networks. This proposed work has 
a CA of 93.34% for AD vs CN, 83.67% CA for CN vs 
MCI, 79.1% Classification Accuracy for AD vs MCI, and 
95.68% CA for AD vs CN vs MCI. Here, the proposed 
network has been applied to 857 participants comprising 
all classes from ADNI-1, ADNI-2, and ADNI-3 database. 
The simulation results indicate that the performance has 
been regarded as the best among the four recent state-of-
the-art techniques.

Other learning strategies, including DL algorithms like 
Long Short-Term Memory (LSTM), Deep Autoencoders 
(DAE), and additional Artificial Neural Networks (ANN) 
variants, may be used in upcoming research to achieve sig-
nificantly improved classification accuracy for all different 
classes of Alzheimer Disease. Additionally, a blend of fea-
ture selection approaches and deep learning models would 
be applied to single modalities as well as multi-modalities, 
which can be tackled as a future topic with a primary focus 
on the interpretability of clinical diagnosis. Also, research 
is mainly focused on feature-based methodologies rather 
than differentiating Alzheimer’s disease from standard con-
trol. The enormous dataset can be used for classification 
in the future. Other machine learning technologies are also 
available for use. As a result, these models can also be used 
to detect other disorders, including blood cancer, Parkin-
son’s disease, brain cancer, eplissey, and Parkinson’s dis-
ease. Based on this concept, various ensemble models can 

Table 9   Comparing the 
proposed model with other 
existing methods by considering 
3D T1 MRI biomarker

Bold indicates a model that is suggested and evaluated against various techniques using a 3D T1 MRI bio-
marker

Classification categories References Model Dataset CA

AD vs CN Lian et al. (2018) FCN ADNI-1, ADNI-2 90.3
Liu et.al. (2020) 3D Dense Net ADNI 88.9
Bi et al. (2020) RF ADNI 90
Liu et al.(2021) Deep Separable CNN ADNI 78.02
Proposed model DCGNN ADNI-1,

ADNI-2,
ADNI-3

93.34

CN vs MCI Liu et.al. (2021) 3D Dense Net ADNI 76.2
Abral et.al. (2020) CNN + 3D ResNET ADNI 83.01
Feng et al. (2020) 3DCNN + SVM ADNI 76.82
Xiu et al. (2021) LSTM ADNI-1,

ADNI-2
67.5

Proposed model DCGNN ADNI-1,
ADNI-2,
ADNI-3

83.67

AD vs MCI Janani et al. (2021) DL + RF ADNI 74
Gupta et al. (2013) NIBR-Net ADNI 78.2
Khan et.al. (2022) DJMAD-Net ADNI 62.9
Alizadeh et al. (2022) 1DCNN ADNI 76.6
Proposed model DCGNN ADNI-1,

ADNI-2,
ADNI-3

79.1

AD vs CN vs MCI Hosseni et. al. (2018) CNN-3D ADNI-1 94.8
payan et al. (2015) 3D-CNN-PAD ADNI-1 94.8
Murugun et al. (2021) DEMNET ADNI-1 95.2
Jian et al. (2019) CNN-AD (VGG16) ADNI-1 95.13
Proposed model DCGNN ADNI-1,

ADNI-2,
ADNI-3

95.68
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be created to improve the classification accuracy of other 
datasets, such as text mining and text classification, which 
classify text written in various languages and formats.
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